Fermi National Accelerator Laboratory

FERMILAB-Conf-88/167-T
October, 1988

b

Status of the Fermilab Lattice
Supercomputer Project*

P. Mackenzie, E. Eichten, G. Hockney, H. B. Thacker, and D. Toussaint'
Theoretical Physics Group

Fermi National Accelerator Laboratory
Batavia, IL 60510 USA

R. Atac, A. Cook, J. Deppe, M. Fischler, I. Gaines,
D. Husby, T. Nash, T. Pham, and T. Zmuda
Advanced Computer Program

Fermi National Accelerator Laboratory
Batavia, IL 60510 USA

Abstract

Fermilab has completed construction of a sixteen node (320 megaflop peak
speed) parallel computer for lattice gauge theory calculations. The archi-
tecture was designed to provide the highest possible cost effectiveness while
maintaining a high level of programmability and constraining as little as pos-
sible the types of lattice problems which can be done on it. The machine is
programmed in C. It is a prototype for a 256 node (5 gigaflop peak speed)
computer which will be assembled this winter.

1 Introduction

The Advanced Computer Program Multi-Array Processor System (ACPMAPS) [1]
is a massively parallel floating point computer designed for lattice gauge theory and
other grid-oriented problems. In the last few years, lattice gauge theorists have
seen the achievement of two important milestones on the road to first-principles
calculations of hadronic properties with reliable estimates of the accuracy of the
calculations. First, apparently reliable Monte Carlo calculations of simple quantities
in pure gauge theory (without quarks) have begun to appear, starting with the

- *Talk given by Paul Mackenzie at DPF 88, Storrs, Connecticut, Aug. 15-18, 1988.
t Permanent address: Dept. of Physics, University of Arizona

Operated by Universities Research Association Inc. under contract with the United States Department of Energy

temperature of the deconfining transition in pure gauge theory. In addition to
providing confidence that the program of large scale Monte Carlo calculation in
four dimensional nonabelian gauge theory is succeeding, these calculations have put
estimates of the computing needs for full QCD calculations on a firmer footing.
Lattice sizes of 32* — 64%, requiring 1 - 20 Gigabytes of data memory seem to be a
reasonable guess.

Second, the search for improved algorithms for the most difficult part of QCD
calculations, the inclusion of the effects of the sea quarks in hadron calculations,
has been very successful.[2] On large lattices, the hybrid Monte Carlo algorithms
which are now coming into use are roughly 10* times faster than the seven year old
algorithms from which they descend, and are now “only” about 100 times slower
than the analogous algorithms for pure gauge theory. Further improvements using
nonlocal techniques such as Fourier acceleration and multigrid methods are quite
possible.

The generation of special purpose computing machines now coming on line for
lattice gauge theory are around 10* times as powerful as the VAXes on which the
first Monte Carlo calculations of the hadron spectrum were performed in 1981.[3]
The combined improvement in hardware and algorithmic calculational power of
108 since 1981 approaches but does not quite meet the demands of full QCD if the
more conservative estimates of calculational needs are correct. The remaining factor
must and almost certainly will be met by further improvements in hardware and
algorithms.

The Fermilab lattice machine was designed to provide very large amounts of
computational power at reasonable cost, without compromising the programmability
required for further rapid algorithm development. A sixteen node machine (320
megaflops, peak speed) has been constructed and is being tested. It is a prototype
for a 256 node machine (5 gigaflops, peak speed, 2 gigabytes of data memory). A
more detailed discussion of the hardware and the performance of the machine will
appear in [4].

2 Architecture

The architecture shares some features with all lattice machines which have been
built since the first Columbia machine[3]: it is based on a massively parallel set of
nodes each containing fast floating point hardware and a lot of data memory. Each
node typically performs calculations for the subset of lattice sites whose fields are
stored in its local memory.

Among the most important differences between our machine and others of its
type are programmability in an ordinary high level language, and the operation of
the individual nodes totally asynchronously both in computation and in communi-
cation. These resulted from two fundamental design goals for the machine: that it
be programmable in a high level language and that the architecture of the machine
constrain as little as possible the types of lattice problems which can be done on

it. Programmability in C and Fortran (we are currently using C) was made possi-
ble by the Weitek XL chip set. This chip set which contains a 20 megaflop (peak
speed) floating point unit, an integer processor, and an instruction sequencer, is
programmable as a whole using compilers supplied by Weitek. Each node contains
one chip set, eight megabytes of data memory and two megabytes of code memory.
The memory is 100 ns. page mode DRAM.

The desire to have the architecture constrain possible physics problems as little
as possible led to the use of totally asynchronous operation of the nodes (MIMD)
and completely transparent nonlocal communication between nodes. MIMD archi-
tecture is very flexible: it can handle problems which are awkward or impossible
for single instruction, multiple data (SIMD) architectures, such as heat bath and
incomplete LU decomposition algorithms and random lattice problems. The allowed
sizes and shapes of the lattices are independent of the details of the hardware. The
node structure of the machine can be made invisible in the high level code, resulting
in improved programmability. MIMD has the potential for communications bottle-
necks which cannot occur with SIMD, but these do not seem to be very severe in
the codes we have tested so far.

Asynchronous internode communication is made possible by a network of switch
crates into which the nodes are plugged. They handle full sixteen port crossbar
switching at bandwidths of 20 megabytes/second per channel. This yields a total
bandwidth of 2.56 gigabytes/second for a 256 node machine. The crates allow any
node to access the memory of any other node without knowing where the other node
is located on the network. With the current switch crate hardware, systems of up
to 2048 nodes are possible before this transparent nonlocal communications feature
is lost.

3 Software and Programming

The main (“control”) program which controls global tasks such as defining lattices
and fields and starting global operations on fields executes on one of the nodes (the
“control” node) which is identical to all of the other nodes except in software. Global
(lattice-wide) objects and operations such as global fields and operations on them,
which might be implemented as arrays and for-loops on a one-CPU machine must be
handled with extensions to the language when the data and operations are spread
over many CPUs. These extensions should reflect as much as possible the concepts
of the problems to be solved, so we consider some of the fundamental concepts of
lattice problems:

| Objects | “Algebras” Operations |

sites s grid: s=s+d
directions d

paths p

unitary matrix u | SU(3): Uz = UUg
quark q

fields U, Q Dirac equation: (P-—m)@Q =4

In object oriented languages such as C++ which are just beginning to appear,
these concepts could be added to the language as new data types and operations.
To us, the structure rather than the syntax is most important and we implement
them with C’s typedef facility and C subroutines called from the control program.
Our software package for doing grid-oriented problems on parallel machines is called
CANOPY.

Consider, for example, the following set of statements from a control program.

latl = periodic_grid(NDIM, latsize);
q = site_field(latl, sizeof(quark));
ql = site_field(lati, sizeof(quark));
complete_definitions();

The function periodic_grid() tells the system that our calculation will be done on a
lattice of NDIM dimensions whose sizes are contained in the array latsize, and which
will be identified by 1at1. The function site_field() tells the system that memory
will be required for two fields identified by q and q1, each with sizeof (quark) bytes
for each site of lat1i. The function complete.definitions() calls routines which
assign specific sites to specific nodes, allocate memory in the nodes for the field data
and site structures, and set up structures for each site pointing to the memory areas
of adjacent sites of the lattice.

The loop over lattice sites in a function which operates on a field q with an
operator dslash and stores the result in another field q1 is replaced by the statement

do_task(dslash_, latil,
PASS, g, sizeof(q),
PASS, q1, sizeof(ql),
END) ;

The system function do_task() passes to all the nodes a pointer to the user supplied
function dslash_and an identifier of a list of sites on which to operate, which may
be the entire lattice 1at1 or some previously defined list of sites such as red_sites.
A system subroutine on the node, invisible to the user, calls dslash_ for the sitesin
the set of sites which have been assigned to the node. Do_task may be used to pass
(PASS) to the nodes arguments required by the function (such as the field identifiers
q and q1), and to integrate (INTEGRATE) data returned from the individual nodes.
The site subroutines access and replace data from global fields with system functions
such as

pq = field_pointer(q, &sitel);

They determine whether the desired data is already present in the node’s local
memory and open a channel to the communications hardware if necessary.

CANOPY is written in C and is easily portable to any single-CPU or MIMD
multiprocessing system with support for UNIX calls. Thus, programs can be tried
out on small lattices on a workstation, and migrate to the production machine
without changing any code. To date, the software has been ported to the ACPMAPS
system, and to an ULTRIX MicroVAX, a MIPS M500 system, a Sun workstation and
an IBM PC running Turbo C. An important consequence of using CANOPY is that
the style of coding is guided into being structured and modular. The benefits of this
range from more readable code, through easier code modification and debugging,
to the ability to confidently optimize critical sections of the code. The overhead
associated with CANOPY ranges from 0 to 15%.

4 Performance

At the present time, only one algorithm has been carefully optimized, a pseudo-heat
bath code for generating gauge configurations. The code, and all of the CANOPY
library, were first written in C. This yielded a link update time of 2.1 ms/link/node.
The compiled code of key routines such as the transcendental functions, SU(3)
multiplication, and key CANOPY routines was replaced with hand optimized code
in a modular way as the time consuming parts of the code were identified. The
current link update time per node for this code is 0.60 msec on a single node and
.66 msec on the full 16 node machine. Link update times for this algorithm have
been published for two of the other two QCD machines. [5,6] Their performance is
roughly 40% slower than this if normalized to the peak speeds of the machines. The
few tens of per cent in relative efficiency, while very encouraging, is not the only
important point, and will vary from algorithm to algorithm. The most important
point is that a very high efficiency was obtained using high level programming and
modular optimization.

5 Current Status

The sixteen node prototype machine is finished and is being tested. Physics calcu-
lations will begin as soon as testing is complete. Most of the parts for the 256 node
machine have been purchased, at a cost of a little over one million dollars. Assembly
of the 256 node machine will begin this winter.

References

[1] P. Mackenzie et al., in Field Theory on the Lattice, ed. A. Billoire et al., Nuc.
Phys. B (Proc. Suppl.) 4, 580 (1988); T. Nash et al., talk given at the Adriatico

[3]

[4]

[5]

(6]

Conference on the Impact of Digital Microelectronics and Microprocessors on
Particle Physics, International Centre for Theoretical Physics, Trieste, Italy,
March 28-30, 1988. '

Don Weingarten, to appear in the Proceedings of the 1988 Symposium on
Lattice Field Theory, Fermilab, Sept. 22-25, 1988, to be published in Nuc.
Phys. B.

For a review of special purpose QCD machines, see Norman Christ, to appear
in the Proceedings of the 1988 Symposium on Lattice Field Theory, Fermilab,
Sept. 22-25, 1988, to be published in Nuc. Phys. B.

Mark Fischler and George Hockney et al., to appear in the Proceedings of the
1988 Symposium on Lattice Field Theory, Fermilab, Sept. 22-25, 1988, to be
published in Nuc. Phys. B; D. Husby et al., to appear in the proceedings of the
1988 Nuclear Science Symposium, Orlando, Florida, R. Atac et al., to appear
in the proceedings of the 1988 Nuclear Science Symposium, Orlando, Florida.

Enzo Marinari, in Field Theory on the Lattice, ed. A. Billoire et al., Nuc. Phys.
B (Proc. Suppl.) 4, 3 (1988).

Norman Christ, in Field Theory on the Lattice, ed. A. Billoire et al., Nuc. Phys.
B (Proc. Suppl.) 4, 241 (1988).

